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Research Background: About 
Stents

● A vascular stent is a tube inserted 
into the lumen of a blood vessel to 
keep the passageway open

● Over 2 million Americans undergo a 
stenting procedure every year, just 
for coronary arteries

● Post-stenting complications 
○ The risk of re-narrowing of the 

artery is 10-20%
○ The risk of the artery clogging after 

stent placement is ≈5%
https://en.wikiversity.org/wiki/WikiJournal_of_Medicine/Medical_gall
ery_of_Blausen_Medical_2014



Research Problem: Shortcomings of 
Stent Manufacturing

● The most common methods include 
laser machining, die-casting, & 
micro-EDM
○ Cost >$100,000
○ One-size-fits-all approach
○ Must be completed off-site

● Industry Innovations in 3D Printing 
Stents
○ PBF (Powder Bed Fusion) 3D 

printers: far too expensive and 
cannot be available on-site 
(extensive infrastructure and 
capital)

https://www.additivemanufacturing.media/articles/3d-printed-nitinol-
opens-new-possibilities-for-arterial-stents/template



ARTHETA-0: Addresses Every 
Industry Shortcoming

● Innovative: 3D printer with a novel motion 
system, specifically designed for printing 
the small and complex cylindrical 
structures of vascular stents

● Affordable: $471 per Production Unit & 
10-15 cents materials cost per stent

● On-site: Simplistic Fused Deposition 
Modeling System (~3 cubic feet), allowing 
for on-site fabrication

● Rapid: Stent can be printed within 2 hours 
of parameter input

● Customizability: Can input patient-specific, 
custom dimensions in arGen software

ARTHETA-0 Prototype Unit



ARTHETA-0 Engineering Objectives
● Implement a polar motion system

○ Eliminate the need for axial synchronization
○ Reduce effects of mechanical slop
○ Allow for greater print quality

● Novel Application of Fused Deposition Modeling 
(FDM) Printing
○ First dual extrusion system on a polar motion 

system
○ First application of a horizontally static print bed 

on a polar printer
○ Increased axial rigidity, elimination of cantilevered 

axes
● Implementation of Novel arGen Software 

○ Using stent parameters to directly generate G-code
○ Implement a streamlined user experience

A combination of affordability, accessibility, and parameterizability never before seen 
in the industry 



Design: R-Carriage
● Mounted in Theta-Axis

○ Horizontal linear rods

● Comprised of 3d printed, PLA and 

PETG parts

● Dual E3DV6 hotends

● Bowden Configuration

○ Increased print speed and quality

R Carriage Render

R Carriage Render



Design: Theta-Carriage
● Supported by 8 v-groove 

bearings

○ 6 allow tensioning for 

carriage security

● Geared 476:20 from Nema17 

output

● Houses extruder gearboxes for 

extrusion system and R-axis

R Carriage Render

Theta Carriage Render



Design: Z-Carriage
● Body comprises of 6 interlocking 3d 

printer plates

● Heated Print bed attached to carriage 

on adjustable, spring-loaded mount

● Driven by 2 lead screws (each 

powered by Nema17 stepper)

● Horizontally static print bed
○ Increased part quality

○ Reduced mechanical slop

R Carriage Render

Z Carriage Render



Design: Dual Extrusion
● Prints with two materials simultaneously 

separate hotends - allows different heat 

settings

● 2 polymers
○ TPU (Thermoplastic Polyurethane)

○ PVA (Polyvinyl Alcohol)

● Allows for more complex stent mesh 

geometries

● Complex designs and drug-eluting stents

R Carriage Render

Dual Extrusion System





ARTHETA-0 ArGen Frontend





Printing Output
● Output: Stent Features and Specifications
● The ARTHETA-0 is capable of printing 

vascular stents with extreme accuracy and 
precision
○ Outer stent diameter of as low as 2 mm
○ Stents printed with 15 micron total 

precision (assuming reasonable slop)
● All stents are biodegradable/bioresorbable 

since they are made of flexible polymer, TPU
○ This reduces the probability of 

post-stenting complications such as 
restenosis

● Parameters of printed stents can be easily 
adjusted using arGen software

Stent g-code render in cartesian 
form



Testing & Results
● Mechanical and Quality Testing 

○ All parts of the ARTHETA-0 have been tested and revised to optimize functionality
○ Every subsystem has been proved to be mechanically viable through mechanical 

motion testing
○ Stents printed on ARTHETA-0 using g-code developed by arGen

Pre-slop Precision Based off Tech Specifications & Mechanical 
Design (ARTHETA-0 vs Traditional Cartesian)

R-axis vs X-axis Theta-axis vs Y-axis Z-axis vs Z-axis
125μm* vs 125μm 2μm vs 125μm 25μm** vs 25μm

Technical Specifications

Motor Sprocket Tooth Count 20

Theta Sprocket Tooth Count 472

Nema 17 Precision 1.8°

Motor Sprocket Pitch Diameter 11 mm

Assumed Outer Stent Diameter 3 mm

*The effect of R-axis precision error in the ARTHETA-0 is 
negligible (unlike x-axis) because structure restrains R-error
**Due to reinforcements, Z-axis slop is much less than 
traditional printers



Future Directions: Engineering
● Implement dual-extrusion software 

support

● Further optimize

● ARTHETA-0 production unit
○ Substitute sheet metal for the acrylic 

frame

○ Optimize efficiency of theta-axis to 

reduce costs and manufacturing times

○ Implement arGen locally on the 

ARTHETA-0

ARTHETA-0 Render Animation

https://docs.google.com/file/d/1vrATdue1XgjDSzYY6zEoI2zlQGaxweHd/preview
https://docs.google.com/file/d/1vrATdue1XgjDSzYY6zEoI2zlQGaxweHd/preview


Future Directions: Medical
● Assess biocompatibility of stent materials with lab 

tests
○ Model Fibroblast Cell Line 
○ Human epithelial cell lines
○ Testing will be done in static and dynamic 

conditions
● Utilize existing Dual Extrusion for more complex stent 

designs
○ Drug-eluting stents

● Extend Print Materials to PCL and PLA to introduce 
customizability in stent rigidity, flexibility, and degree 
of biocompatibility

Complex Stent Geometries

https://www.frontiersin.org/files/Art
icles/492755/fbioe-07-00366-HTML/i
mage_m/fbioe-07-00366-g001.jpg



The Innovation of the 
ARTHETA-0 allows us to 
envision a future where 
doctors can use current 
medical scanning 
techniques to image a 
patient's arteries and 
receive a 
custom-fabricated stent 
available for use within 2 
hours of parameter 
inputs. All under $500.

In Conclusion,

Thank
You
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